Abstract
The article presents a set of modern methodological approaches to teaching differential equations in higher education, aimed at overcoming common difficulties students face in mastering both theoretical foundations and the applied content of the course. It is noted that the traditional focus on mechanical computation often fails to ensure deep understanding; therefore, it is advisable to shift the emphasis of the learning process toward developing conceptual insight. One of the leading approaches is the use of multiple representations (analytical, graphical, tabular), which enables students to comprehend concepts from different perspectives, develop the ability to switch between forms of information presentation, and gain a better understanding of the nature of differential equation solutions.
An important component is the contextualization of mathematical abstractions through real-world application problems from the natural and socio-economic sciences. Students work with models that have specific meaning – radioactive decay, population dynamics, epidemiological processes, heat exchange, etc. – which reduces anxiety when studying complex topics and increases interest in the subject. Active learning methods – discussions, small groups, inquiry-based questions, analysis of typical mistakes – contribute to the development of critical thinking, independent analysis skills, and collaborative problem-solving.
Significant attention is given to the use of digital technologies. The article shares experience in using computer algebra systems (Maple, Mathematica, MATLAB), visualization tools (GeoGebra, GeomED, STELLA), and even spreadsheets for implementing numerical methods. Examples are provided of educational projects in which students model real-world processes – pendulum motion, disease spread, heat exchange – completing the full cycle from problem formulation to interpretation of results. This approach promotes not only material comprehension but also the development of interdisciplinary thinking, research skills, and confidence in using mathematics as a tool for exploring the real world. The article may be of interest to mathematics educators, methodologists, researchers, and anyone involved in improving mathematics education.
References
Клочко, В. І., & Бондаренко, З. В. (2004). Деякі аспекти методики застосування нових інформаційних технологій під час вивчення теми “Диференціальні рівняння” у вищому технічному навчальному закладі. Науковий часопис Українського державного університету імені Михайла Драгоманова. Серія 2. Комп’ютерно-орієнтовані системи навчання, 1(8), 92–98. https://sj.udu.edu.ua/index.php/kosn/article/view/443
Клочко, В. (2019). Формування математичних компетентностей студентів технічних ВНЗ. Науковий часопис Українського державного університету імені Михайла Драгоманова. Серія 2. Комп’ютерно-орієнтовані системи навчання, 19(26), 64–67. https://sj.udu.edu.ua/index.php/kosn/article/view/10
Кравченко, С. (2024). Теорія і практика технологізації освіти в Україні в контексті інтеграційних процесів. Український педагогічний журнал, (2), 57–69. https://doi.org/10.32405/2411-1317-2024-2-57-69
Красножон, O. B. (2010). Комп’ютерна підтримка методів Адамса і Рунге-Кутта наближеного розв’язування диференціальних рівнянь. Information Technologies and Learning Tools, 19(5). https://doi.org/10.33407/itlt.v19i5.360
Марценюк, В., Сверстюк, А., Козодій, Н., Кареліна, О., & Загородна, Н. (2021). Огляд математичних моделей в економіці на основі диференціальних рівнянь. Computer-Integrated Technologies: Education, Science, Production, (45), 26–31. https://doi.org/10.36910/6775-2524-0560-2021-45-04
Морозова, Л. (2024). Організація самостійної роботи студентів у закладах вищої освіти україни. Український педагогічний журнал, (4), 152–162. https://doi.org/10.32405/2411-1317-2024-4-152-162
Петренко, О., & Чепок, О. (2023). Щодо розробки факультативного курсу з елементів теорії диференціальних рівнянь для учнів закладів загальної середньої освіти. Physical and Mathematical Education, 38(2), 43–49. https://doi.org/10.31110/2413-1571-2023-038-2-007
Сітак, І. В. (2018). Методика навчання диференціальних рівнянь майбутніх бакалаврів з інформаційних технологій [Неопубл. автореф. дис. канд. пед. наук]. Національний педагогічний університет імені М. П. Драгоманова. https://npu.edu.ua/images/file/vidil_aspirant/avtoref/%D0%94_26.053.03/Sitak.pdf
Страх, О., & Лукашова, Т. (2021). Міждисциплінарні зв’язки при вивченні деяких тем дискретної математики та диференціальних рівнянь. Physical and Mathematical Education, 29(3), 112–118. https://doi.org/10.31110/2413-1571-2021-029-3-017
Фурсенко, О., Черновол, Н., & Бобрицька, Г. (2024). Математичні моделі бойових дій як засіб вдосконалення професійної орієнтованості викладання математичних дисциплін у внз. Physical and Mathematical Education, 39(1), 64–69. https://doi.org/10.31110/fmo2024.v39i1-09
AlNajdi, S. M. (2022). The effectiveness of using augmented reality (AR) to enhance student performance: using quick response (QR) codes in student textbooks in the Saudi education system. Educational technology research and development. https://doi.org/10.1007/s11423-022-10100-4
Dumanska, T., Smorzhevsky, Y., & Homeniuk, H. (2022). Stem-Competences of Future Mathematics Teachers and Methods of Their Formation. Collection of Scientific Papers Kamianets-Podilsky Ivan Ohienko National University Pedagogical Series, 28, 7–11. https://doi.org/10.32626/2307-4507.2022-28.7-11
Hubal, H., Siasiev, A., Sipii, V., Syrmamiikh, I., & Burtovyi, S. (2024). Digital Technologies in the Process of Teaching STEM Disciplines: Challenges and Prospects. Cadernos de Educação, Tecnologia e Sociedade, 17(1), 445–458. https://doi.org/10.14571/brajets.v17.n1.445-458
Jaramillo-Mediavilla, L., Basantes-Andrade, A., Cabezas-González, M., & Casillas-Martín, S. (2024). Impact of Gamification on Motivation and Academic Performance: A Systematic Review. Education Sciences, 14(6), 639. https://doi.org/10.3390/educsci14060639
Khotimah, R. P., Adnan, M., Ahmad, C. N. C., & Murtiyasa, B. (2022). The development of STEM-based discovery learning module in differential equations: One-to-one evaluation. 4th international conference on frontiers of biological sciences and engineering (fbse 2021). AIP Publishing. https://doi.org/10.1063/5.0099799
Lampropoulos, G., Keramopoulos, E., Diamantaras, K., & Evangelidis, G. (2022). Augmented Reality and Gamification in Education: A Systematic Literature Review of Research, Applications, and Empirical Studies. Applied Sciences, 12(13), 6809. https://doi.org/10.3390/app12136809
Lozada, E., Guerrero-Ortiz, C., Coronel, A., & Medina, R. (2021). Classroom Methodologies for Teaching and Learning Ordinary Differential Equations: A Systemic Literature Review and Bibliometric Analysis. Mathematics, 9(7), 745. https://doi.org/10.3390/math9070745
Pekh, P., Lavrenchuk, S., Miskevych, O., & Diachenko, R. (2022). Порівняльний аналіз методів розв’язування диференціальних рівнянь засобами MATLAB та MATLAB SIMULINK. Computer-Integrated Technologies: Education, Science, Production, (48), 103–110. https://doi.org/10.36910/6775-2524-0560-2022-48-16
Verma, N. (2023, 19 лютого). How Effective is Gamification in Education? 10 Case Studies and Examples – Axon Park. Axon Park. https://axonpark.com/how-effective-is-gamification-in-education-10-case-studies-and-examples/#:~:text=A%20study%20was%20conducted%20among,Technical%20University%20of%20Athens,%20Greece
AlNajdi, S. M. (2022). The effectiveness of using augmented reality (AR) to enhance student performance: using quick response (QR) codes in student textbooks in the Saudi education system. Educational technology research and development. https://doi.org/10.1007/s11423-022-10100-4 (in English).
Dumanska, T., Smorzhevsky, Y., & Homeniuk, H. (2022). Stem-Competences of Future Mathematics Teachers and Methods of Their Formation. Collection of Scientific Papers Kamianets-Podilsky Ivan Ohienko National University Pedagogical Series, 28, 7–11. https://doi.org/10.32626/2307-4507.2022-28.7-11 (in Ukrainian).
Fursenko, O., Chernovol, N., & Bobrytska, H. (2024). Matematychni modeli boiovykh dii yak zasib vdoskonalennia profesiinoi oriientovanosti vykladannia matematychnykh dystsyplin u vvnz. Physical and Mathematical Education, 39(1), 64–69. https://doi.org/10.31110/fmo2024.v39i1-09 (in Ukrainian).
Hubal, H., Siasiev, A., Sipii, V., Syrmamiikh, I., & Burtovyi, S. (2024). Digital Technologies in the Process of Teaching STEM Disciplines: Challenges and Prospects. Cadernos de Educação, Tecnologia e Sociedade, 17(1), 445–458. https://doi.org/10.14571/brajets.v17.n1.445-458 (in English).
Jaramillo-Mediavilla, L., Basantes-Andrade, A., Cabezas-González, M., & Casillas-Martín, S. (2024). Impact of Gamification on Motivation and Academic Performance: A Systematic Review. Education Sciences, 14(6), 639. https://doi.org/10.3390/educsci14060639 (in English).
Khotimah, R. P., Adnan, M., Ahmad, C. N. C., & Murtiyasa, B. (2022). The development of STEM-based discovery learning module in differential equations: One-to-one evaluation. U 4th international conference on frontiers of biological sciences and engineering (fbse 2021). AIP Publishing. https://doi.org/10.1063/5.0099799 (in English).
Klochko, V. (2019). Formuvannia matematychnykh kompetentnostei studentiv tekhnichnykh VNZ. Naukovyi chasopys Ukrainskoho derzhavnoho universytetu imeni Mykhaila Drahomanova. Seriia 2. Kompiuterno-oriientovani systemy navchannia, 19(26), 64–67 (in Ukrainian).
Klochko, V. I., & Bondarenko, Z. V. (2004). Deiaki aspekty metodyky zastosuvannia novykh informatsiinykh tekhnolohii pid chas vyvchennia temy “Dyferentsialni rivniannia” u vyshchomu tekhnichnomu navchalnomu zakladi. Naukovyi chasopys Ukrainskoho derzhavnoho universytetu imeni Mykhaila Drahomanova. Seriia 2. Kompiuterno-oriientovani systemy navchannia, 1(8), 92–98 (in Ukrainian).
Krasnozhon, O. B. (2010). Kompiuterna pidtrymka metodiv Adamsa i Runhe-Kutta nablyzhenoho rozviazuvannia dyferentsialnykh rivnian. Information Technologies and Learning Tools, 19(5). https://doi.org/10.33407/itlt.v19i5.360 (in Ukrainian).
Kravchenko, S. (2024). Teoriia i praktyka tekhnolohizatsii osvity v Ukraini v konteksti intehratsiinykh protsesiv. Ukrainian Educational Journal, (2), 57–69. https://doi.org/10.32405/2411-1317-2024-2-57-69 (in Ukrainian).
Lampropoulos, G., Keramopoulos, E., Diamantaras, K., & Evangelidis, G. (2022). Augmented Reality and Gamification in Education: A Systematic Literature Review of Research, Applications, and Empirical Studies. Applied Sciences, 12(13), 6809. https://doi.org/10.3390/app12136809 (in English).
Lozada, E., Guerrero-Ortiz, C., Coronel, A., & Medina, R. (2021). Classroom Methodologies for Teaching and Learning Ordinary Differential Equations: A Systemic Literature Review and Bibliometric Analysis. Mathematics, 9(7), 745. https://doi.org/10.3390/math9070745 (in English).
Martseniuk, V., Sverstiuk, A., Kozodii, N., Karelina, O., & Zahorodna, N. (2021). Ohliad matematychnykh modelei v ekonomitsi na osnovi dyferentsialnykh rivnian. Computer-Integrated Technologies: Education, Science, Production, (45), 26–31. https://doi.org/10.36910/6775-2524-0560-2021-45-04 (in Ukrainian).
Morozova, L. (2024). Orhanizatsiia samostiinoi roboty studentiv u zakladakh vyshchoi osvity ukrainy. Ukrainian Educational Journal, (4), 152–162. https://doi.org/10.32405/2411-1317-2024-4-152-162 (in Ukrainian).
Pekh, P., Lavrenchuk, S., Miskevych, O., & Diachenko, R. (2022). Porivnialnyi analiz metodiv rozviazuvannia dyferentsialnykh rivnian zasobamy matlab ta matlab simulink. Computer-Integrated Technologies: Education, Science, Production, (48), 103–110. https://doi.org/10.36910/6775-2524-0560-2022-48-16 (in English).
Petrenko, O., & Chepok, O. (2023). Shchodo rozrobky fakultatyvnoho kursu z elementiv teorii dyferentsialnykh rivnian dlia uchniv zakladiv zahalnoi serednoi osvity. Physical and Mathematical Education, 38(2), 43–49. https://doi.org/10.31110/2413-1571-2023-038-2-007 (in Ukrainian).
Sitak, I. V. (2018). Metodyka navchannia dyferentsialnykh rivnian maibutnikh bakalavriv z informatsiinykh tekhnolohii [Neopubl. avtoref. dys. kand. ped. nauk]. NATsIONALNYI PEDAHOHIChNYI UNIVERSYTET imeni M. P. DRAHOMANOVA (in Ukrainian).
Strakh, O., & Lukashova, T. (2021). Mizhdystsyplinarni zviazky pry vyvchenni deiakykh tem dyskretnoi matematyky ta dyferentsialnykh rivnian. Physical and Mathematical Education, 29(3), 112–118. https://doi.org/10.31110/2413-1571-2021-029-3-017 (in Ukrainian).
Verma, N. (2023, 19 liutoho). How Effective is Gamification in Education? 10 Case Studies and Examples - Axon Park. Axon Park. https://axonpark.com/how-effective-is-gamification-in-education-10-case-studies-andexamples/#:~:text=A%20study%20was%20conducted%20among,Technical%20University%20of%20Athens,%20Greece (in English).

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.